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Abstract
Porous materials, concentrated colloidal suspensions are examples of confining
systems developing large specific surface and presenting a rich variety of
shapes. Such an interfacial confinement strongly influences the molecular
dynamics of embedded fluids and the diffusive motion of entrapped Brownian
particles. An individual trajectory near the interface can be described as
an alternate succession of adsorption steps and random flights in the bulk.
Statistical properties of these random flights in various interfacial confining
systems are needed as prerequisites in order to understand the full transport
process. Related to first passage processes, these properties play a central
role in numerous problems such as the mean first exit time in a bounded
domain, heterogeneous catalytic reactivity and nuclear magnetic relaxation in
complex and biological fluids. In the present work, we first consider the various
possibilities of connecting two points of a smooth interface by a random flight
in the bulk. Second, we analyse from the theoretical and experimental points
of view a way to probe Brownian flight statistics. From the experimental point
of view, we investigate the slow fluid dynamics near some colloidal interfaces
by field-cycling NMR relaxometry. This is a way to follow slow dynamical
correlations from 1 ns to 10 µs. This spectroscopy appears to be a good choice,
considering that the algebraic nature of the probability of the first return to a
surface builds a long-time memory. The experimental part confirms that the
embedded fluid dynamics is sensitive to possible morphologic crossover and
provides information about interface geometry. We also believe that such an
approach can be used to probe interfacial dynamics by itself, for example in
the case of a colloidal system undergoing a phase transition (dynamical arrest,
rotational blockage, . . .).

1. Introduction

Porous materials and colloidal suspensions are examples of confining systems developing
large specific surface, presenting a rich variety of shapes and exhibiting complex and irregular
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morphologies on a large length scale. Such a confinement strongly influences the molecular
dynamics of embedded fluids and the diffusive motion of Brownian particles entrapped inside
these materials. Diffusion transport plays a crucial role in various transport phenomena in
nature and industry [1, 2].

In this general frame, a close inspection of particle and or molecular trajectories is
instructive. The particle reaches the interface after a random walk in the bulk. It can be
either adsorbed or transferred with some probability or it can be reflected, performing a new
diffusion step in the bulk. Until definitive loss by adsorption or final escaping, the particle
trajectory can be described as an alternate succession of surface encounters and flights in the
bulk (also called loops in this paper). The statistics of times and the displacements between two
interface hits are needed as prerequisites in order to understand the full transport process.
This question is related to a first passage problem [3] and plays a central role in thermodynamics
of rough colloidal surfaces [4, 5], in the evaluation of the mean first exit time from a bounded
domain [8, 6, 7] or in better understanding of nuclear magnetic relaxation processes in complex
fluids and porous media [12, 9]. Interestingly enough, these loop statistics have to be used
whatever the surface boundary conditions are, ranging from strong adsorption (Dirichlet) to
complete reflection (Neumann) with the intermediate situation of partially reflected motion.

In the present work,we review some statistical properties of these random flights in various
interfacial confining systems. First, we consider the various possibilities of connecting two
points of a smooth interface by a random flight in the bulk and we recall some recent results
concerning Pearson random walk statistics. Second, we analyse from the theoretical and
experimental points of view a way to probe Brownian flight statistics. Some experimental
results are then presented. Last, we discuss how surface shape and interface irregularities can
affect the loop statistics and induce, at long times, specific transport properties.

2. Random flights and first passage statistics

There are numerous ways to connect two points of an interface by a random flight in the bulk.
Gas diffusion in confining geometry provides a good illustration of these various transport
regimes. At very low pressure, in the Knudsen regime, a gas molecule connects two distinct
points of the interface by a straight line, called a chord. Diffuse reflection conditions at the
interface and the chord length distribution function [11–13] determine the randomness of the
molecular trajectory. In contrast, at high pressure, the mean free path λ of a molecule is well
below the mean pore chord length 〈lp〉. The so-called Knudsen number K nu = λ/〈lp〉 goes
to zero and the molecule is mainly submitted at stochastic distances to random reorientation
and reinitialization of its velocity according to a stable Maxwell–Bolztmann distribution. The
stochastic distances are exponentially distributed with a mean value λ. This regime is very
close to a Brownian flight between two points of the interface.

We have simulated the diffusion of a gas molecule inside a sphere of diameter 2R. A large
domain of variation of the Knudsen number was explored. We have computed the probability
distribution functions (pdfs) characterizing the time (ψL(t)) and distance (θL(r)) distribution
between two interface hits. In the Knudsen regime (see figures 1 and 2), we find a linear
dependence of these two pdfs which is imposed by the linear evolution of the chord length
distribution between the origin and 2R. For K nu close to zero, i.e. in the molecular regime,
the probability distribution ψL(t) evolves as 1/t1.5 over a large range of time. Meanwhile, the
probability distribution of displacements θL(r) runs as 1/r2 where r is the end to end distance
of a bulk loop. This last function exhibits a cut-off for a distance close to the diameter of this
bounded domain. For this smooth and curved surface, we find a well-known result predicted
a long time ago in the case of a infinite flat surface [14] (Cauchy distributions) and recently
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Figure 1. Evolution of the probability distribution ψL(t) that a particle starts from the interface
at t = 0 and returns to it, for the first time, at time between t and t + dt . Comparison between
different gas diffusion regimes inside a sphere of diameter 2R. The Knudsen regime is observable
for K nu−1 = 0 and a Brownian random walk is reached for K nu−1 = 2000.
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Figure 2. Evolution of the probability distribution θL(r) where r is the end to end Euclidean
distance of a bulk. Comparison between different gas diffusion regimes inside a sphere of diameter
2R. The Knudsen regime is observable for K nu−1 = 0 and an Brownian random walk is reached
for K nu−1 = 2000.

discussed in detail by Bychuk and O’Shaughnessy [15, 16]. The finite persistence length of the
interface and the finite size of this bounded domain introduce a natural upper cut-off avoiding
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the divergence of the first (the average time of a flight) and second moment of ψL(t). For
a bounded domain of diffusion, the first moment of ψL(t) is also the mean first exit time of
a random walk starting from the interface. We can check using data shown in figure 1 that
this first moment is almost independent of the mean free path λ and is directly connected to
the specific surface of this interfacial system. This result was recently demonstrated in the
literature in the case of Pearson random walks [6–8].

In the Knudsen regime, ψL(t) and θL(r) are simply connected using the basic relation
r = 〈v〉t , where 〈v〉 is the mean molecular velocity of the gas [13]. In the opposite regime,
the Fourier transform θ̃L(k) of θL(r) can be related to ψL(t) through the diffusion Green’s
function [16]:

θ̃L(k) =
∫ ∞

0
dt ψL(t) exp(−Dk2t). (1)

This equality assumes that the Brownian dynamics in the bulk is not biased by the
confinement of the interface. To be more general, let us consider that ψL(t) ∼ t−α and
θL(r) ∼ r−β for large enough t and r . Using equation (1), it is easy to see that these two
exponents are simply connected. If we substitute s = Dk2 in equation (1), then the use of the
ansatz ψL(t) = t−α and the Tauberian estimates [14] leads to θ̃L(s) ∼ 1 − sα−1. Taking the
inverse Fourier transform we get:

θL(r) =
∫ ∞

−∞
dk θ̃L(k) exp(−ikr) ∼ 1

r1+2(α−1)
. (2)

This gives us

β = 2α − 1. (3)

The validity of this scaling equality was recently checked in the case of irregular and
fractal interfaces [25].

3. A way to probe Brownian flights

3.1. Possible strategy

We will now consider the case of Brownian random walks in confinement where the trajectory
near an interface can be described as an alternate succession of adsorption steps and Brownian
flights in the bulk. As shown elsewhere [9, 17], the nuclear magnetic relaxation dispersion
(NMRD) technique is an effective experimental method for following such a bulk mediated
surface diffusion.

During its self-diffusion, a nuclear spin-bearing fluid molecule experiences a local
fluctuating magnetic interaction I (t). In the simplest case, I (t) is a scalar interaction which
takes a defined value during the adsorption step (A) and vanishes during the bulk loop (L).
This situation is shown in part (A) of figure 3. I (t) appears as an alternate sum of Heaviside
distributions H (t) with the same amplitude. I (t) can be also a tensorial interaction involving
for example a quadrupolar or an intra-dipolar magnetic interaction. In these two cases, it is
possible to show that I (t) is meanly sensitive (in the slow dynamic limit) to the time evolution
of the surface director probed by the molecule during its self-diffusion. As shown in the right
part of figure 3, I (t) takes a specific value for each encounter with the surface directly related to
the local surface orientation. Curvature, persistence length and roughness of a surface can then
be probed by random flights. The basic case of a flat surface is interesting. For an immobile
surface, I (t) evolves according to the scheme of figure 3(A). Rotation of the interface will
induce a specific modulation of the magnetic noise I (t) directly related to the surface dynamics.
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Figure 3. Slow component of a magnetic fluctuation probed by a fluid molecule near a flat interface.
A and L stand for the adsorption stage and for the Brownian loop in the bulk, respectively. In (A),
I (t) is a scalar interaction which takes a defined value during the adsorption step. In (B), I (t) is
either an intra-dipolar or a quadrupolar interaction and takes a specific value for each encounter
with the surface.

The magnetic fluctuation will then evolve according to figure 3(B). A sensitive way to probe the
temporal fluctuation of I (t) is to look at the spectral density of this magnetic noise. This noise
induces a nuclear magnetic relaxation process at the Larmor frequency ω (with ω = 2π f ).
Using field-cycling NMR spectroscopy [9, 17], the related spin-lattice relaxation rate R1(ω)

can be measured over a large range of frequenciesω, mainly from a few kHz to several hundred
MHz. This frequency range allows us to probe correlation times ranging from 1 ns to tenths
µs. Following [18], the spin-lattice relaxation rate can be decomposed, at low frequency, into
a fast and a slow contribution statistically independent, such as R1(ω) = Rslow

1 (ω)+ Rfast
1 . The

fast contribution is related to local molecular dynamics and is almost constant at low frequency.
The slow motion contribution can be written as Rslow

1 (ω) ∝ J (ω) + 4J (2ω), where J (ω) is
the time Fourier transform of the correlation function 〈I (t) ∗ I (−t)〉, where ∗ stands for the
convolution operator. This last equality offers an experimental way to probe the statistical
properties of I (t). In the two following sections, we will see how J (ω) or Rslow

1 (ω) are
sensitive to random flight statistics and depend on ψL(t).

3.2. Case of an unbounded interface

In this section, we analyse the case of a fluid molecule interacting with an unbounded interface
through a scalar interaction. This situation is shown in figure 3(A). The ‘relaxation noise’, I (t),
thus appears as an alternate sum of Heaviside distributions H (t) with the same amplitude. A
typical occurrence of I (t) can be written as I (t) = L(t) with L(t) = ∑

i (−1)i H (t − ti ). The
particle encounters the surface for an adsorption step during typical time intervals ]t2i , t2i+1)[
or leaves it for a bulk loop according to typical time intervals ]t2i+1, t2i+2)[.

In order to get J (ω), we first compute the second derivative of the self-correlation function
〈I (t) ∗ I (−t)〉 according to [11]:

〈I (t) ∗ I (−t)〉′′ = L ′′
2(t) = −〈I ′(t) ∗ I ′(−t)〉 =

∑
i, j

(−1)i+ jδ(t − (ti − t j )). (4)

Assuming no correlation between successive temporal events (i.e. adsorption steps
followed by a bulk excursion), we compute the following ensemble averages:

〈δ(t − (t2 j+1 − t2 j ))〉 = ψA(t)

〈δ(t − (t2 j+2 − t2 j+1))〉 = ψL(t)

〈δ(t − (t2 j+2 − t2 j ))〉 = ψA(t) ∗ ψL(t)

〈δ(t − (t2 j+3 − t2 j+1))〉 = ψL(t) ∗ ψA(t) . . .

(5)
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where ψA(t) is the pdf characterizing the adsorption time distribution. The second time
derivative L ′′

2(t) is a even function and can written for t � 0 as:

L ′′
2(t) ∝ −2δ(t) + ψA(t) + ψL(t)− 2ψA(t) ∗ ψL(t)

+ ψL(t) ∗ ψA(t) ∗ ψL(t) + ψA(t) ∗ ψL(t) ∗ ψA(t)− · · · (6)

and for t � 0 as:

L ′′
2(t) ∝ −2δ(t) + ψA(−t) + ψL(−t)− 2ψA(−t) ∗ ψL(−t)

+ ψL(−t) ∗ ψA(−t) ∗ ψL(−t) + ψA(−t) ∗ ψL(−t) ∗ ψA(−t)− · · · . (7)

The time Fourier transform of L ′′
2(t) denoted L̃ ′′

2(ω) is given by:

L̃ ′′
2(ω) ∝ −2 + 2 Re(ψ̃A(ω) + ψ̃L(ω)− 2ψ̃A(ω)ψ̃L(ω)

+ ψ̃2
L(ω)ψ̃A(ω) + ψ̃2

A(ω)ψ̃L(ω)− · · · (8)

where ψ̃L(ω) and ψ̃A(ω) are the time Fourier transforms of the two pdfs characterizing the
loop statistics and the adsorption step respectively. Equation (8) can be simplified as:

L̃ ′′
2(ω) ∝ − Re

[
(1 − 	̃L(ω))(1 − 	̃A(ω))

1 − 	̃L(ω)	̃A(ω)

]
. (9)

We get:

L̃2(ω) = σ

ω2
Re

[
(1 − 	̃L(ω))(1 − 	̃A(ω))

1 − 	̃L(ω)	̃A(ω)

]
. (10)

σ is a constant taking into account the strength of the magnetic interaction during the adsorption
step.

As discussed in section 2, let us consider that we have, at long times,ψL(t) = (µτ
µ
L )/t (1+µ),

where τL is the minimal loop duration. A basic and usual choice is to consider that
ψA(t) = (1/τA) exp(−t/τA), where τA is the average adsorption time. Asymptotic expansions
of ψ̃L(ω) and 	̃A(ω) for small ω values and any value of µ between 1 and 2 reads:

ψ̃L(ω) = (1 − a(µ)) + ib(µ)ωµ (11)

with

a(µ) = |�(−µ)| cos(πµ/2)µτµL
b(µ) = |�(−µ)| sin(πµ/2)µτµL

(12)

and

ψ̃A(ω) = (1 − ω2τ 2
A) + iωτA. (13)

� stands for the Gamma function. After some tedious but straightforward computations we
finally get:

L̃2(ω) = στ 2
A

a(µ)(1 + b(µ)2ωµ/a(µ)2) + (2τAb(µ)ω/a(µ)) + (τ 2
Aω

2−µ/a(µ))
. (14)

In the specific case of a flat interface where µ = 1/2, we obtain:

J (ω) = L̃2(ω) = στA/2ω0

[(ω/ω0)1/2 + (ω/ω0) + 1/2(ω/ω0)3/2]
(15)

where ω0 is a characteristic frequency written as ω0 = �2(1/2)τL/2τ 2
A. At low frequencies

(ω � ω0), L̃2(ω) evolves as 1/
√
ω. Around ω0, we have a 1/ω regime. Finally, for ω 
 ω0,

L̃2(ω) is dominated by the term 1/ω3/2.
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Figure 4. Fluid trajectory at proximity of an finite flat interface. A: adsorption step; L: Brownian
loop in the bulk relative to the finite interface; T: escaping tail from the finite interface. In the
inset, a statistical occurrence of the noise, I (t), product of an alternate sum of Heaviside functions,
L(t), and a cut-off function K (t). te is the overall escaping time from the particle, associated to
the considered occurrence.

3.3. Finite interface and escaping process

Let us now consider a finite interface as shown in figure 4. Two escaping tails (T) begin and
end the overall exploration of this interface. The ‘relaxation noise’, I (t), is now bounded by
a cut-off function K (t) that takes into account the possibility of leaving definitively the finite
flat interface. K (t) equals unity between two escaping tails and zero elsewhere. A typical
occurrence of I (t) can be written as I (t) = K (t) · L(t). In order to compute J (ω), the
statistical independence of the two random functions L(t) and K (t) is assumed. We use the
following approximation:

〈I (t) ∗ I (−t)〉 = 〈(L(t) · K (t)) ∗ (L(−t)K (−t))〉 ∼ 〈L(t) ∗ (L(−t)〉〈K (t) ∗ K (−t)〉. (16)

The validity of these relations was checked numerically. Generation of a large number of
alternate series of time intervals chosen according to algebraic ψL(t) and exponential ψA(t)
was first performed. 〈I (t)∗ I (−t)〉, L2(t) = 〈L(t)∗ L(−t)〉 and Cesc = 〈K (t)∗ K (−t)〉 were
computed. Finally, and as shown in figure 5, equation (16) appears to be a good approximation.

The ensemble average 〈K (t)〉 is the overall survival probability S(t) near the finite surface.
Cesc(t) = 〈K (t) ∗ K (−t)〉 can be written as

Cesc(t) = −
∫ ∞

t
S′(te)(te − t) dte =

∫ ∞

t
S(te) dte. (17)

Finally,

J (ω) = C̃esc(ω) ∗ L̃2(ω) (18)

where L̃2(ω) is given by equation (14).
The approximation proposed in equation (16) can be used to analyse the general case

shown in figure 3(B). J (ω) can be generalized as C̃orien(ω) ∗ C̃esc(ω) ∗ L̃2(ω). C̃orien(ω) is
the time Fourier transform of Corien(t) which takes into account the variation of the magnetic
interaction magnitude in time and/or in space. Such a situation can be encountered in the case
of fluctuating interfaces [10] or for disordered, multi-connected or rough confining interfacial
systems.
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Figure 5. 1D numerical computation of 〈I (t) ∗ I (−t)〉 (open squares), L2(t) = 〈L(t) ∗ (L(−t)〉
(open triangles) and Cesc(t) = 〈K (t) ∗ K (−t)〉 (dotted line) after generation of a large number of
alternate series of time intervals chosen according to algebraic ψL(t) and exponential ψA(t). The
product L2(t)Cesc(t) (continuous line) is very close to 〈I (t) ∗ I (−t)〉.

4. Some experimental and numerical results

The simplest way to investigate the random flight statistics close to an interface is to look at
the dynamics near a macroscopic plane surface. However, such an experimental model is not
sufficiently sensitive. We have chosen to work with an aqueous colloidal suspension of flat
and thin particles called laponite [19, 20]. This synthetic clay particle can be considered, on
average, as a negatively charged platelet, 1 nm thick, with an average diameter around 25–
30 nm. For an ionic strength of 10−4 M) and above the concentration threshold of 0.01 w/w,
one observes a jamming and/or a glass transition associated to a strong slowing down of the
particle dynamics. We have measured the proton and deuterium NMRD in several laponite
colloidal glasses. Measurements were performed,at 298 K, on a fast field-cycling spectrometer
from Stelar Company. Proton (H20) and deuterium (D20) NMRD are similar. This proves
that the proton relaxation process is mainly due to the intramolecular proton–proton interaction
as required in our theoretical model. Figure 6 shows a typical evolution of the 1H NMRD
dispersions in the glass ‘phase’. A leveling-off regime appears below a crossover frequency
fc ∼ 40 kHz, Above this threshold, R1(ω) evolves mainly as ω−1 + Cte. The constant takes
into account the spin-lattice relaxation rate associated to rapid molecular dynamics. As shown
in the inset of figure 6, the use of the frequency derivative of R1 is an efficient way to exhibit
specific contributions of slow dynamics and especially the algebraic regime.

In parallel to the experimental investigation, a simulated annealing algorithm in
reciprocal q-space has been successfully developed allowing us to generate 3D off-lattice
configurations of laponite suspensions having neutron small-angle scattering spectra similar
to the experimental ones [21, 22]. Moreover, a supplementary constraint, imposing a defined
nematic order parameter Sord, was added. Three different configurations are shown in figure 7.
We have simulated the self-diffusion of an embedded fluid molecule inside these confining
interfacial systems. Brownian dynamics, with a time step of 5 ps, is performed to follow the
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Figure 6. Water spin-lattice relaxation rates in a colloidal glass of laponite versus the Larmor
frequency at T = 298 K. The particle concentration is 4 w/w. Closed circles: 1H NMR dispersion.
Continuous line: theoretical model. The frequency derivative of R1 is shown in the inset.
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Figure 7. 3D off-lattice reconstruction of laponite suspensions using a simulated annealing
algorithm in reciprocal q-space [21, 22]. The particle concentration is 0.028 w/w. A: Sord = 0.8.
B: Sord = 0; C: Sord = −0.43.

self-diffusion of the fluid. Each time that a molecule hits the interface, it gets adsorbed for a
time τA. The self-diffusion coefficient of a water molecule near a disc-like colloid is taken as
5 × 10−10 m2 s−1.
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Figure 8. Numerical simulation of the overall survival probability 〈K (t)〉 inside a 3D off-lattice
reconstruction of laponite glasses. The particle concentration is 0.04 w/w. The adsorption time is
τA = 4 ns. The self-diffusion coefficient of a water molecule near a disc-like colloid is taken as
5 × 10−10 m2 s−1.

We consider that, at long times and low frequencies, the mean relaxation process is
mainly due to intramolecular dipolar interaction as shown in the experiment [10]. This
magnetic interaction is computed when the molecule is adsorbed. Otherwise, it is set at
zero. In the slow dynamics domain, we compute the spin-lattice relaxation rate according to
Rslow

1 (ω) ∝ J1(ω) + 4J2(2ω) with

J1,2 = (24π/5)FT (〈Y 1,2∗
2 (L D(t = 0)) · f (t = 0)Y 1,2

2 (L D(t)) · f (t)〉) (19)

with f (t) = 1 if the molecule is adsorbed on the solid surface and f (t) = 0 if not (bulk loop).
L D(t) are the Euler angles between the constant magnetic field �B0 and the surface director
probed by the molecule at time t . The product, inside the brackets, is equal to 0 when the
molecule is not adsorbed.

In the glassy state, the low-frequency magnetic relaxation can be induced by three possible
processes: (i) the overall survival probability on a defined particle; (ii) the ‘orientational
memory’ between different particles; (iii) the dynamics near the flat and finite interface as
discussed in section 3. As shown in figure 8, it is found that the overall survival probability
on a defined particle, 〈K (t)〉, is essentially exponential with an average escaping time, τesc,
around 1 µs. This process cannot justify by itself the experimental evolution shown in figure 6
but only the crossover at small frequencies. In the glassy state and for particle concentration
Wt ranging from 0.01 to 0.05, it was numerically found that (R1(ω)/Wt ) dispersions follow
a unique master curve as experimentally observed [10]. Finally, the evolution of R1(ω) is not
affected by the nematic order of the colloidal suspension (see figure 9) and depends essentially
on the confined dynamics of a molecule nearby the surface of a single particle. As shown in
figure 9, modulation of the adsorption time τA permits us to change drastically the algebraic
regime of relaxation. For short adsorption times (τA = 0.5 ns), the characteristic exponent of
the algebraic regime is close to 0.5 and it moves to higher values (around unity in figure 9)
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(This figure is in colour only in the electronic version)

as τA increases to 4 ns. These numerical results are in good agreement with our theoretical
predictions (see equation (15) and following comments). Indirectly, the exponent variation
can provide information about the interaction strength between a molecule and a surface.

These numerical simulations support the theoretical approach developed in section 3.3.
This model depends essentially on two independent components. (i) An overall survival
probability 〈K (t)〉 on a defined finite interface. This function takes into account the final
orientation memory loss appearing when a molecule leaves definitively a defined particle
but not the time fluctuations generated by a random alternation of adsorption steps and bulk
loops. Previous numerical simulations show that 〈K (t)〉 is essentially exponential and can be
written as 〈K (t)〉 = exp(−t/τesc) where τesc is the average escaping time from a defined flat
particle. τesc imposes the low-frequency crossover. (ii) A crossover frequencyω0 that imposes
the NMRD algebraic regime and its characteristic exponent which is experimentally close to
unity. The prediction of this theoretical model is shown (continuous lines) in figure 6 with the
two following values: τesc = 3.5 µs and ω0 = 0.1 MHz. We observe a good agreement with
experimental data over more than two orders of magnitude in the frequency range. The specific
value of ω0 can be justified if we choose a minimal loop duration of τL = 10 ps, something
larger that the hydrogen bond lifetime. In this case, the average adsorption time is τA = 5 ns.
Using the Eyring relationship, this adsorption time is related to a surface activation free energy
of about 10 kT, of the same order of magnitude as the experimental heat of immersion [23]. It
is possible to give a rough estimation of τesc, assuming that the main escaping process is the
occurrence of Brownian loops having an end to end extension larger than the particle size ξ .
We get τesc = (ξ2/(6Dw)) + τA

√
ξ2/(6DwτL). For a diffusion coefficient Dw = 10−9 m2 s−1
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and a particle size ξ = 30 nm, we find a value of 0.8 µs, which is about the same order of
magnitude as predicted by the theoretical model.

5. Surface shape and dimensional crossover

The former results seem to confirm that the probability of the first return to a surface is algebraic
and exhibits long-time memory. This noticeable property extends the fluid dynamics near an
interface towards the low-frequency domain and has some interesting consequences concerning
the long-term surface reactivity of a fluid molecule. We also believe that such characteristics
can be used to probe interfacial dynamics by itself, for example in the case of a colloidal
system undergoing a phase transition (dynamical arrest, rotational blockage) [10]. The case
of a flat surface is really specific and, in most cases, curved, anisotropic or irregular interfaces
are encountered. In this last part, we discuss briefly how surface irregularities can affect the
loop statistics and induce specific transport properties.

5.1. Surface roughness

In this section, we want to summarize some recent results [25] performed in collaboration
with Grebenkov et al [25] and concerning the first passage statistics for a random walker
starting from a disordered interface and returning to it. Fractal boundaries are considered here
as appropriate models to mimic the geometrical irregularity in realistic systems. We wish
to investigate how the power-law evolution of ψL(t) and θL(r) changes in the case of fractal
interfaces. Numerical simulations were carried out in 3D embedding spaces. As a generic
self-similar fractal in R3, we have studied 3D intersections of 4D Weierstrass–Mandelbrot self-
affine hypersurfaces [13]. Weierstrass–Mandelbrot functions are also used in three dimensions
to generate self-affine interfaces. Starting from a random point located in the interfacial region,
an off-lattice diffusive Brownian dynamics simulation is performed to compute the first passage
statistics. It is found that basic properties of the first passage statistics strongly evolve with the
surface fractal dimension d . In the case of self-similar interfaces, we find thatψ(t) ∼ t−α and
θ(r) ∼ r−β for large enough t and r . For self-affine interfaces, a similar trend is first observed.
However, a crossover to a regular flat interface situation (α = 3/2 and β = 2) appears at large
r and long times t as shown in figure 10. We have recently found [25] that α = (d + 1)/2 and
β = d in three dimensions.

These relationships can be understood if we consider the integrated probability PD(t) that
a random walk launched at t = 0 in the bulk hits the boundary interface for the first time at
time t . This probability evolves at long times as [4, 24]:

PD(t) ∼ t−(d+2−de )/2 (20)

where de is the Euclidean dimension of the embedding space. But PD(t) can also be considered
as the probability for a random walk to escape from the absorbing surface (survive at least
until time t). In such conditions, we have

ψL(t) = −dPD(t)

dt
. (21)

Then α = (d + 2)/2 for de = 2 in agreement with our results.
How robust is the equality α = (d + 1)/2? The scaling argument (see equation (20))

developed by Maritan [24] is quite general, whatever the geometrical complexity of the surface.
It involves the transport at the fractal surface of a volume with linear size L. This observation
opens the possibility for the Brownian flights to be sensitive to surface geometrical crossover at
long times. This is the case for a self-affine surface (see figure 10). However, such a situation



Random flights in confining interfacial systems S4071

10-11 10-10 10-9 10-8

Time

Ψ
L
(t

)

108

109

1010

1011

107

106

105

Figure 10. Evolution of the probability density ψL(t) that a particle starts from the interface at
t = 0 and returns to it, for the first time, at time between t and t + dt . Case of a self-affine interface
in 3D embedding space with d = 2.85. The two continuous lines have (in the log–log scale) a
slope of −1.95 and −1.5 respectively. A time crossover is observable around 10−9.

could be observed in the case of mass fractal systems with 1 < d < 2 embedded in 3D
Euclidean space: a regular behaviour should be expected at small distances and short times
(α = 3/2 and β = 2), followed at larger distances and times by a crossover to α = (d + 1)/2
and β = d . A numerical work is actually underway to check this point. A basic situation
exhibiting such an evolution is the case of a long and very thin cylinder (d = 1). In the
following section, we analyse this specific system.

5.2. Probing colloidal shape

Is it possible to probe a colloidal shape, looking at the slow and confined fluid dynamics near
the colloidal surface? Such a question is closely related to Kac’s problem [26]: Can one
hear the shape of a drum? In the following, we analyse the case of a thin cylindrical colloid
(a few nm in diameter). In the local framework of the cylinder shown in figure 11, where
�nd defines the z axis, the slowest contribution of the magnetic quadrupolar noise I (t) felt
by a molecule diffusing near the surface is related to the value of Y 0

2 (π/2). I (t) exhibits a
time evolution apparently similar to the case of a flat surface shown in figure 4. However,
Brownian dynamics numerical simulations performed around a unique cylinder do not exhibit
an algebraic evolution but a logarithmic one, as shown in figure 12.

This result can be rationalized if we observe that, at short times, a fluid molecule diffusing
near the cylinder probes a flat and slightly curved surface. At longer times and larger distances,
the colloidal particle appears as a portion of a line. The embedded fluid dynamics is sensitive
to this geometrical crossover. Following the former discussion on the equality α = (d + 1)/2,
ψ(t) ∼ 1/t3/2 at short times and crosses over to 1/t at longer times. This time evolution
generates, for J (ω), a −ln(ω) dependence at small frequencies. Such a process should be
considered in order to rationalize recent results on magnetic relaxation dispersion of lithium
or tetramethyl ammonium in diluted suspensions of DNA [27], where unexpected −ln(ω)
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Figure 11. Slow contributions of a magnetic fluctuation I (t) near a cylindrical interface for an intra-
dipolar or a quadrupolar interaction. A and L stand for the adsorption stage and the Brownian loop
in the bulk, respectively. �n(�r) stands for the normal vector to the cylindrical surface at position. On
the right, the time evolution of the slowest contribution of I (t) in a local framework of the cylinder
where �nd defines the z-axis.
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Figure 12. Computation of the spin-lattice relaxation dispersion using a Brownian dynamics
simulation around a isolated cylinder having a diameter of 2.5 nm. Slow contributions of a magnetic
fluctuation I (t) (intra-dipolar or a quadrupolar interaction) near the cylindrical interface are taken
into account. The self-diffusion coefficient of the fluid molecule near the colloid is taken as
5 × 10−10 m2 s−1. The average adsorption time is τA = 0.5 ns.

dependence is observed. Experiments on suspensions of long colloidal thin rods (either mineral
or biological) are currently underway in our group in order to check if the slow fluid dynamics
near a colloidal interface may provide information about the particle shape.
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6. Conclusion

In this paper, we review some statistical properties of random flights in various interfacial
confining systems. The statistics of times and displacements between two consecutive interface
hits are needed as prerequisites in order to understand the full transport process. This
question is related to a first passage problem and plays a central role in various transport
phenomena. We analyse some properties of the Brownian flight statistics and discuss how they
are involved in self-diffusion processes. We show how surface shape and interface irregularities
can affect the loop statistics and induce specific properties at long times. From the experimental
point of view, we investigate the slow fluid dynamics near colloidal interfaces by field-cycling
NMR relaxometry. It is a way to follow slow dynamical correlations from 1 ns to 10 µs.
This spectroscopy appears to be a good choice, considering that the algebraic nature of the
probability of the first return to a surface builds a long-time memory. The experimental part
confirms that the embedded fluid dynamics is sensitive to possible morphologic crossover and
provide information about interface geometry. We also believe that such an approach can be
used to probe interfacial dynamics by itself, for example in the case of a colloidal system
undergoing a phase transition (dynamical arrest, rotational blockage, . . .).

Further works are underway in our group to check these points and to clarify several
problems related to surface accessibility, dynamical bias induced by a long-range surface field
and finally possible correlation between successive Brownian flights in an intricate interfacial
geometry.
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